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Introduction 
 Agriculture in modern times rely on pesticides in order to control pests that pose a threat to crop productivity [1]. 

Pesticides may contaminate the soil, air, and water with potential adverse effects on non-target aquatic organisms, plants, 

mammals and soil microorganisms [2]. They can bioaccumulate in living organisms, biomagnify along the food chain and 

inadvertently affect human health [3]. Majority of modern-day pesticides are synthetic organic chemicals with a mode of 

action that interfere with metabolic processes in target organisms [4]. Paraquat (1,1’-dimethyl-4-4’-bipyridinium) and its 

dichloride salt (1,1’-dimethyl-4-4’-bipyridinium dichloride) are commonly used herbicides in defoliating and drying during 

the gathering of commercial crops [5]. Similarly, glyphosate (N-phosphonomethyl) glycine (commercially sold as roundup 

or force up) is a systemic non-selective herbicide which is used extensively, particularly in developing countries for weed 

control [6]. It acts through the inhibition of amino acid and protein synthesis leading to the death of the weed within days 

of application. However, the toxicity of glyphosate is potentiated through its formulation with surfactants to facilitate 

penetration into the weeds. Thus, non-target organisms such as fish may be inadvertently exposed to these glyphosate 

formulations when applied on land and washed off into nearby surface waters via run-off or spray drift [7] eliciting acute 

and chronic biological effects to aquatic life [8].  

 Though, several studies have evaluated the acute toxicity of paraquat and glyphosate singly in various fish species 

[9] as well as their subacute effects using different biomarkers [8]. Similarly, several studies have evaluated various 

biomarkers of toxicity of paraquat and glyphosate singly in Nile Tilapia (O. niloticus). Specifically, for paraquat, studies with 

O. niloticus have reported 96 hLC50 value of 11.84 mg/L [10] with dose-dependent gill pathologies at exposure levels of 12 

mg/L and 14.20 mg/L, LC50 value of 20 mg/L as well as liver and gonadal pathologies at 0.5 mg/L at varying temperatures 

[11] as well as 96 hLC50 value of 17.49 µL/L [12] of paraquat. For glyphosate, studies using O. niloticus have shown varying 

adverse effects (such as 96 hLC50 value of 16.8 ppm with gill, liver and kidney pathologies [13], gill, liver and kidney 
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pathologies at sublethal concentrations (5 and 15 ppm) [14], alteration in enzyme activities at 1.2 mg/L [15], gill, liver and 

kidney pathologies [16], nuclear abnormalities [17] at 17.2 mg/L, antioxidant enzymes (SOD, GSH, CAT) activity reduction, 

among other biomarkers at different concentrations (0.2, 0.8, 4 and 16 mg/L) for 80 days [18], alterations in blood parameters 

as well as induction of hepatic oxidative stress and DNA damage in the blood at different concentrations (5, 10, 20, 30 and 

40 mg/L) Acar et al. [19] of glyphosate. 

 However, there are scanty studies which evaluate the comparative genotoxic, biochemical and histological effects 

of the herbicides, paraquat and glyphosate on the Nile Tilapia (O. niloticus) and at the concentrations used in this study. O. 

niloticus (Linnaeus, 1758) is a deep-bodied fish with cycloid scales. It is a plankton-feeding omnivorous species native to 

Africa but it is cultured worldwide [20]. Growth retardation and harmful effects at population and community levels may 

result from micronuclei formation which is marked by alterations in erythrocyte nuclei [21]. Biochemical biomarkers such 

as catalase (CAT), superoxide dismutase (SOD), glutathione-s-transferases (GST), reduced glutathione (GSH), 

malondialdehyde (MDA), an index of lipid peroxidation have been used to assess toxic effects in animals exposed to 

pollutants [22,23]. Histopathological changes can be used as biomarkers of the effects of anthropogenic pollution on 

organisms and are compatible as indicators of ecosystem health [24].  

 Consequently, the study aim was to assess the effects of subacute levels of paraquat and glyphosate on genotoxic, 

biochemical and histological biomarkers in O. niloticus with a view to evaluate potential risk to non-target animals such as 

fish from diffuse sources of pesticides into aquatic ecosystems. 

 

Materials and Methods 
Test compounds 
 The test compounds utilized in this study were herbicides- paraquat and glyphosate which were purchased from 

a chemical vendor at Ojota, Lagos, Nigeria. Paraquat (paraforce – active ingredient 200 g W.C. in 1 L) and glyphosate (Force 

Up-360 g glyphosate/L (in the form of 480 g/L Glyphosate-isopropylamine, salt) [25]. A stock solution of 1 g/L was prepared 

for each herbicide (paraquat: 5 mL in 1 L of dechlorinated tap water=1 g/L; glyphosate: 2.78 mL in 1 L of dechlorinated tap 

water=1 g/L) from which working solutions were computed. 

 

Collection and acclimatization of test animal 
 The Nile Tilapia, O. niloticus (Actinopterygii, Perciformes, Cichlidae) juveniles (length: 15.2-18.5 cm) were 

purchased from an aquaculture farm in Ayobo, Lagos, Nigeria. They were transported in an open 25 L plastic container to 

the Environmental Toxicology laboratory at the University of Lagos. The fishes were acclimatized to the laboratory 

environment in a cylindrical plastic tank (60 L) three-quarter filled with dechlorinated tap water for 7 days [25]. The fishes 

were fed with Coppens feed (2 mm) twice daily. The dechlorinated tap water was changed every 24 h to prevent buildup 

of waste metabolites and putrefaction of food materials. 

 

Experimental design for acute toxicity studies of paraquat and glyphosate against O. niloticus 
 Tests were conducted to obtain the range of concentrations ideal for the definitive tests. Following this, definitive 

tests were conducted in which five active O. niloticus were randomly introduced into the test tanks containing varying 

concentrations of paraquat, glyphosate and control (dechlorinated tap water only). Each treatment was duplicated, giving 

a total of 10 fishes per treatment, including control (without treatment). The concentrations of test compounds were as 

follows: paraquat-8, 10, 12, 14 and 16 mg/L; glyphosate-0.5, 1.0, 1.5, 2.0 and 2.5 mg/L and control. The bioassay tanks were 

covered with a net to prevent fish from escaping. Mortality was assessed once in 24 h over the 96 h duration of the 

experiment [26]. 

 

Experimental design for subacute toxicity studies 
 For the subacute toxicity studies, eight O. niloticus were exposed in triplicates to subacute concentrations (1/10th 

and 1/100th of 96 h LC50 values) of paraquat and glyphosate as follows: paraquat: 1.10 mg/L and 0.11 mg/L; glyphosate: 0.10 

mg/L and 0.01 mg/L and control. The test media were changed every 72 h following a static renewal bioassay procedure 

[25]. At 14 and 28 d post-exposure, blood was obtained from O. niloticus selected from the test media and control for 

genotoxicity studies while gills and liver were excised from the same fishes following euthanization [27] for biochemical 

and histological studies.  

 

Evaluation of genotoxic biomarkers in O. niloticus exposed to paraquat and glyphosate 
 O. niloticus juveniles (length range: 15.2-18.5 cm) were exposed to subacute concentrations (1/10th and 1/100th of 

96 h LC50 value) of the test compounds in triplicates for 28 days. Peripheral blood samples were drawn from the posterior 

caudal vein [25] with the aid of a 2 mL syringe on day 14 and 28 during the exposure period. For each concentration, at days 

14 and 28, three fishes were used with one slide prepared per fish. Thereafter, the blood was smeared on a clean glass slide, 
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fixed using 100% ethanol for 20 mins and dried at room temperature for 24 h [28]. Afterwards, Giemsa (10%) stain was 

applied to the smear for 10 mins. The glass slides were evaluated under a digital light microscope (Leica® DM500, Wetzlar, 

Germany) at 1000x for frequencies of micronuclei and nuclear aberrations. At each assessment, 1000 cells per fish were 

analysed totaling 3000 erythrocytes for each group. For scoring the micronuclei, the criteria of [29] was adopted.  

 

Assessment of biochemical biomarkers in O. niloticus exposed to paraquat and glyphosate 
 Following the harvest of livers of O. niloticus randomly selected from test and control bioassay tanks, the livers 

were transported to the University of Lagos Biochemistry laboratory in an ice chest for further analysis. The livers were 

rinsed in ice cold 1.15% KCL solution, blotted and weighed. Thereafter, the livers were homogenized with 0.1 M phosphate 

buffer (pH 7.2) in a laboratory mortar. Acid-washed laboratory sand was added and blended in the mortar using a pestle 

[23]. The homogenate therefrom was centrifuged (2500 rpm) for 15 mins, the supernatant was decanted and stored at -20 °C  

until analysis. The activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione-s-

transferases (GST)), reduced glutathione (GSH), and malondialdehyde (MDA) (an index of lipid peroxidation) were 

determined as described in Sun and Zigma [30], Sinha et al. [31], Habig et al. [32], Sedlak and Lindsay [33] and Buege and 

Aust [34] respectively. 

 

Assessment of histological biomarkers in O. niloticus exposed to paraquat and glyphosate 
 Following euthanization at designated post-exposure days, dissected gills and liver of O. niloticus were washed 

with buffered normal saline. Afterwards, they were fixed for 48 h in Bouin’s fluid, dehydrated through serial (70% to 100%) 

changes of ethanol, cleared in xylene and embedded in paraffin wax [25]. Thereafter the gills and liver were sectioned at 5 

to 6 μm, stained with eosin and haematoxylin then analysed with a digital light microscope (XSZ-801BN model, China) 

coupled with 12.1 mega pixels camera (Casio, EX-Z450, Japan) [25].  

 

Statistical analysis 
 The dose-response data for the 96 h toxicity tests was analyzed using probit analysis [35]. One-way analysis of 

variance (ANOVA) and Least Significant difference (LSD) test was used to analyze statistical differences between the mean 

of the genotoxicity (micronuclei, binucleated and blebbed cells frequency) and biochemical biomarkers activity in O. niloticus 

exposed to subacute concentrations of paraquat and glyphosate at days 14 and 28. The results were deemed significant at 

p<0.05. All analyses were conducted using SPSS 20.0 for windows. 

 

Results 

Relative acute toxicity of paraquat and glyphosate against O. niloticus 
 The median lethal concentration (96 h LC50 value) of paraquat and glyphosate against O. niloticus were 11.20 mg/L 

and 1.22 mg/L respectively. Glyphosate was estimated to be 9x more toxic than paraquat against O. niloticus. 
 

Genotoxic biomarkers in the erythrocytes of O. niloticus exposed to subacute concentrations of paraquat and 

glyphosate 
 Binucleated (BN) and blebbed cells were non-significantly higher (p>0.05) at both subacute concentrations of 

paraquat-exposed O. niloticus compared to control on days 14 and 28. Though, BN cells were non-significantly lower 

(p>0.05) at day 28 only in the 0.11 mg/L concentration compared to the 1.12 mg/L concentration and control Figure 1A, SI 1. 

However, micronucleated (MN) cells were significantly higher (p<0.05) at the 1.12 mg/L (higher) concentration only at day 

14 and at both subacute concentrations of paraquat-exposed O. niloticus on day 28 compared to control Figure 1A, SI 1.  

 In glyphosate-exposed O. niloticus, there were no significant differences (p>0.05) between BN and blebbed cells at 

both subacute concentrations and control on days 14 and 28 Figure 1B, SI 1. However, MN cells were significantly higher 

(p<0.05) in the erythrocytes of O. niloticus exposed to the lower (0.01 mg/L) concentration when compared to the higher (0.12 

mg/L) concentration and control at days 14 and 28 (Figure 1B, SI 1).  
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Figure 1. Genotoxic biomarkers of erythrocytes of exposed O. niloticus to subacute concentrations of paraquat (1A) 

and glyphosate (1B) over a period of 28 days. Key: n=3000; dissimilar letters across columns represents significant 

differences between the treatment means at p<0.05. Values are presented as mean±SD. 

 

Biochemical biomarkers in the liver of O. niloticus exposed to subacute concentrations of paraquat and 

glyphosate 
 At day 14, there were no significant differences (p>0.05) between paraquat-exposed and control O. niloticus as well 

as glyphosate-exposed and control O. niloticus for all hepatic antioxidant enzymes and MDA activities (Figure 2, SI 2). Also, 

at day 28, there were no significant differences (p>0.05) in CAT and SOD enzymes activity between paraquat-exposed and 

control O. niloticus (Figures 2C and 2D, SI 2). Similarly, at day 28, GSH and CAT enzymes activity were not significantly 

different (p>0.05) between glyphosate-exposed and control O. niloticus (Figures 2F and 2I, SI 2). 

 However, significant differences (p<0.05) were observed in GSH, GST and MDA activities at day 28 between 

paraquat-exposed and control O. niloticus (Figures 2A, 2B and 2E, SI 2). Specifically, GSH activity was significantly higher 

(p<0.05) in 0.11 mg/L concentration compared to 1.12 mg/L concentration of paraquat-exposed and control O. niloticus 

(Figure 2A, SI 2). Further, GST and MDA activities were significantly higher (p<0.05) in both subacute concentrations of 

paraquat-exposed O. niloticus when compared to controls (Figure 2B and 2E, SI 2).  

 Similarly, significant differences (p<0.05) were observed in GST, SOD and MDA activities at day 28 between 

glyphosate-exposed and control O. niloticus (Figures 2G, 2H and 2J, SI 2). Specifically, GST and MDA activities were 

significantly higher (p<0.05) (Figures 2G and 2J, SI 2) while SOD activity was significantly lower (p<0.05) at both subacute 

concentrations of glyphosate-exposed O. niloticus compared to control (Figure 2H, SI 2). 
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Figure 2. Biochemical biomarkers of the liver of exposed O. niloticus to subacute concentrations of paraquat Figure 

2A-E and glyphosate Figure 2F-J over a period of 28 days. Key: GSH-Reduced glutathione, SOD-Superoxide 

dismutase, GST-Glutathione-S-Transferase, CAT-Catalase, MDA-Malondialdehyde; n=3; dissimilar letters across 

columns signifies significant differences between the treatment means at p<0.05. Values are presented as mean±SD. 
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Histological biomarkers in O. niloticus exposed to subacute concentrations of paraquat and glyphosate 
 Photomicrographs of the representative histological sections from fish in each experimental group is shown in 

Figures 3 and 4. The histological evaluations revealed mild shortening (0.11 mg/L paraquat, 0.12 mg/L glyphosate) (Figures 

3b, 3e, 3g and 3j) to severe shortening (1.12 mg/L paraquat, 0.01 mg/L glyphosate) (Figures 3c, 3h and 3i) of the primary 

lamella in the gills of exposed O. niloticus respectively at days 14 and 28. Though no abnormalities were observed in the gills 

of 0.01 mg/L glyphosate exposed O. niloticus at day 14 (Figure 3d) and control O. niloticus at days 14 and 28 (Figures 3a and 

3f). Portal inflammatory cells were observed at day 14 in 0.12 mg/L glyphosate-exposed O. niloticus only (Figure 4e) and in 

all paraquat- and glyphosate-exposed O. niloticus at day 28 (Figures 4g-4j). There were no histological abnormalities in the 

liver of paraquat-exposed and 0.01 mg/L glyphosate-exposed O. niloticus at day 14 (Figures 4b-4d) and control O. niloticus 

at days 14 and 28 Figures 4a and 4f. 

 
Figure 3. Photomicrographs of longitudinal sections through the gills of Oreochromis niloticus after 14-and 28-days 

exposure to sub-lethal concentrations of glyphosate, paraquat and untreated. Key: (a) Untreated (day 14)-normal 

secondary lamellae SL and primary lamellae PL (mag.-× 100); (b) Paraquat (day 14) 0.11 mg/L- mild shortening of the 

lamellae LN (mag.-× 100); (c) Paraquat (day 14) 1.12 mg/L-severe shortening of the lamellae LN (mag.-× 100); (d) 

Glyphosate (day 14) 0.01 mg/L-normal gills with PL and SL. (mag.-× 100); (e) Glyphosate (day 14) 0.12 mg/L-mild 

shortening of the lamellae LN (mag.-× 100); (f) Untreated (day 28)-normal appearing SL and PL (mag.-× 100); (g) 

Paraquat (day 28) 0.11 mg/L- mild shortening of the lamellae LN (mag.-× 100); (h) Paraquat (day 28) 1.12 mg/L- severe 

shortening of the lamellae LN (mag.-× 100); (i) Glyphosate (day 28) 0.01 mg/L severe shortening of the lamellae LN 

(mag.-× 100); (j) Glyphosate (day 28) 0.12 mg/L- mild shortening of the lamellae LN (mag.-× 100). 
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Figure 4. Photomicrographs of longitudinal sections through the livers of O. niloticus after 14-and 28-days exposure 

to sub-lethal concentrations of glyphosate, paraquat and untreated. Key: (a) Untreated (day 14)-Blood sinusoids (BS), 

central vein (CV), portal vein (PV) and the basophilic portion with nucleus and the acidophilic cytoplasm of the acinar 

cells, normal liver. (mag.-×100); (b) Paraquat (day 14) 0.11 mg/L-normal liver cells (mag.-× 100); (c) Paraquat (day 14) 

1.12 mg/L-normal liver cells (mag.-×100); (d) Glyphosate (day 14) 0.01 mg/L-normal liver cells (mag.-× 100); (e) 

Glyphosate (day 14) 0.12 mg/L PV and the basophilic portion with nucleus and the acidophilic cytoplasm of the acinar 

cells with aggregates of inflammatory cells, portal inflammation (mag.- ×100); (f) Untreated (day 28) - BS, CV, PV and 

the basophilic portion with nucleus and the acidophilic cytoplasm of the acinar cells, normal liver. (mag.-×100); (g) 

Paraquat (day 28) 0.11 mg/L-portal inflammation cells (mag.-×100); (h) Paraquat (day 28) 1.12 mg/L-portal 

inflammation cells (mag.-× 100); (i) Glyphosate (day 28) 0.01 mg/L portal inflammation cells (mag.-×100); (j) 

Glyphosate (day 28) 0.12 mg/L-portal inflammation cells (mag.- ×100). 
 

Discussion 
 This study evaluated the relative acute toxicity as well as the genotoxic, biochemical and histological biomarkers 

of exposure to subacute concentrations of the herbicides (paraquat and glyphosate) in O. niloticus (Nile Tilapia). The 96 

hLC50 value (11.20 mg/L) of paraquat to O. niloticus in this study is lower than the 96 hLC50 values of 11.84 mg/L and 20 

mg/L reported in O. niloticus exposed to paraquat by Babatunde et al. [10] and Figueiredo-Fernandes et al. [11] respectively. 

Similarly, the 96 hLC50 value (1.22 mg/L) of glyphosate in the current study is lower than the observed LC50 values of 11.30 
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mg/L [36] and 16.8 ppm [13] in O. niloticus exposed to glyphosate. The observed higher toxicity of glyphosate up to 9x that 

of paraquat differs with the observations of Ayanda et al. [9] who stated paraquat toxicity up to ~8x that of glyphosate 

against Clarias gariepinus. Similarly, in an immobility assay with Daphnia magna, paraquat (OSAQUAT) was observed to be 

~14x more toxic when compared to glyphosate (RON-DO) based on the 48 hEC50 values [37]. Glyphosate and paraquat have 

been observed to be moderately toxic and very toxic respectively to aquatic organisms [37,38]. The higher toxicity of 

glyphosate compared to paraquat in this study may be due to the “extreme” stability of the former in sterile water in the 

laboratory [37,39]. The differential toxicities of the two herbicides against O. niloticus can be attributed to their different 

methods of action, fish species, herbicide formulation and life stage [25,40]. 
 A chemical genotoxic agent’s action may result to an increase in micronucleus and nuclear abnormalities 

occurrence [41]. A vast amount of chemicals can impede the DNA synthesis of an exposed organism and this can bring 

about nuclear aberrations [42]. The development of these aberrations represents a way to remove from the cell nucleus any 

elaborated genetic material [43]. The dose-dependent genotoxic biomarkers (nuclear aberrations) observed in the paraquat-

exposed fishes especially for MN differs from the observations of Amaeze et al. [44] who observed minimal nuclear 

abnormalities including no MN at paraquat exposures of 0.1 mg/L (102.84 µg/L). However, the study results corroborate 

the observations of Oladokun et al. [25] who reported a significant (p<0.05) dose-dependent increase in micronuclei in the 

red blood cells of the African sharptooth catfish (C. gariepinus) exposed to sublethal concentrations of paraquat at day 28. 

On the other hand, the observed significant increase in MN in the glyphosate-exposed O. niloticus, though not dose-

dependent corroborates the findings of Samantha et al. [17] and Acar et al. [19] who reported nuclear abnormalities in O. 

niloticus exposed to 17.2 mg/L and different concentrations 5, 10, 20, 30 and 40 mg/L respectively of glyphosate. Several 

studies have reported pollutants which induce nuclear aberrations in fish tissues [45,46]. Whilst the mechanisms initiating 

these nuclear aberrations are not fully described, these aberrations are viewed as signs of genotoxic damage, hence, they 

can match the scoring of these parameters (micronuclei, blebbed nuclei and binucleated cells) during normal genotoxicity 

surveys [21,47].  
 Aquatic ecosystems are usually affected by numerous pesticides from various sources [48]. Perturbations at the 

biochemical and cellular levels are amongst the subtle biological responses observed from exposure of fishes to pollutants 

[49]. Herbicides can potentially elicit reactive oxygen species (ROS) in living organisms causing oxidative stress in non-

target organisms [50]. Defensive mechanisms have emerged from fish and other vertebrates to counter the deleterious ROS 

effects resulting from various xenobiotics metabolism [51]. CAT and SOD enzymes possess similar roles [52]. SOD is a 

metalloenzyme that plays an important antioxidant role. It is the major protection countering the toxic superoxide radicals 

effect in organisms enabling the conversion of superoxide radicals to H2O2 and H2O [53]. Catalase facilitates the removal of 

H2O2, which metabolizes to molecular oxygen and water [54]. The observed induction of lipid peroxidation (indicated by 

increased MDA levels) and most antioxidant enzymes in this study especially at day 28 agrees with previous studies 

reporting alteration in enzyme activities in glyphosate-exposed O. niloticus at concentrations of 1.2 mg/L [15], induction of 

hepatic oxidative stress at 5, 10, 20, 30 and 40 mg/L [19] and reduction in antioxidant enzymes activity at 0.2, 0.8, 4 and 16 

mg/L [18] of glyphosate. Further, this study revealed a significant decrease in SOD level at day 28 following exposure O. 

niloticus to subacute concentrations of glyphosate. This could be a reaction to the elevated ROS induced by the toxic effects 

of herbicides [55]. The observed significantly increased GST levels in the herbicides concentrations and significantly 

increased GSH level in the lower paraquat concentration at day 28 only contrasts with the findings of Moustafa et al. [56] 

who observed a significant reduction in GSH and GST levels in C. gariepinus exposed to glyphosate. The major function of 

GSH is to protect cells against oxidative stress due to free radicals through reductive detoxification of reactive intermediates 

like H2O2 [57]. On the other hand, GSTs potentiates the coupling of reduced GSH with electrophilic metabolites. Also, they 

are involved in depuration of reactive intermediates and oxygen radicals [54]. Studies have shown that activities of these 

enzymes may be potentiated in the liver of fish exposed to various pollutants [50].  
 Histology studies are regarded as a sensitive endpoint in detecting organ toxicity to xenobiotics [58] with 

capabilities of revealing detailed information regarding the acute and chronic effects of toxicants on targeted organs which 

may not be detected by functional biomarkers [59]. Fish gills are the main place for ion exchange with the environment, and 

also, the main channel of pesticide penetration, this is because they are in constant contact with water [60]. The histological 

alterations observed in this study ranging from mild to severe lamellae necrosis especially at day 28 in the herbicides-

exposed fishes agrees with the observations of liver and gonadal pathologies as well as gill pathologies in O. niloticus 

exposed to paraquat at 0.5 mg/L [11] as well as 12 mg/L and 14.20 mg/L [10] respectively. Similarly, the study findings agree 

with previous studies observations in glyphosate-exposed O. niloticus of gill, liver and kidney pathologies at 5, 12 and 16.8 

ppm [13,14] as well as at 17.2 mg/L [16]. Several studies have revealed alterations in O. niloticus liver elicited by different 

toxic chemicals [61]. Fusion of secondary lamellae as a result of exposure to pesticides appears to have a protective role in 

diminishing the affected gill surface; this response slows down the penetration of toxic and may result in fish choking [62, 

63]. 
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Conclusions 
 This study revealed significant biomarkers of subacute concentrations of paraquat and glyphosate in O. niloticus. 

The novelty of this study is the comparative assessment of multiple biomarkers at varying levels of biological organization 

(from cell to whole system level) of two (2) commonly used herbicides (paraquat and glyphosate) at subacute concentrations 

(near environmentally relevant concentrations). The observed toxicities may pose ecological risk through potential 

bioaccumulation of the herbicides in non-target aquatic organisms and biomagnification through the food chain. Hence, 

studies and advocacies on risk of herbicides use with potential attendant impact on non-target organisms are essential [64]. 

Appropriate and irregular herbicides use are advised so that the advantageous effects of these chemicals will be achieved. 

These will promote responsible consumption and production and sustain life below water (United Nations Sustainable 

Development Goals 12 and 14 respectively).  
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